3 research outputs found

    ARCHITECTURE FOR A CBM+ AND PHM CENTRIC DIGITAL TWIN FOR WARFARE SYSTEMS

    Get PDF
    The Department of the Navy’s continued progression from time-based maintenance into condition-based maintenance plus (CBM+) shows the importance of increasing operational availability (Ao) across fleet weapon systems. This capstone uses the concept of digital efficiency from a digital twin (DT) combined with a three-dimensional (3D) direct metal laser melting printer as the physical host on board a surface vessel. The DT provides an agnostic conduit for combining model-based systems engineering with a digital analysis for real-time prognostic health monitoring while improving predictive maintenance. With the DT at the forefront of prioritized research and development, the 3D printer combines the value of additive manufacturing with complex systems in dynamic shipboard environments. To demonstrate that the DT possesses parallel abilities for improving both the physical host’s Ao and end-goal mission, this capstone develops a DT architecture and a high-level model. The model focuses on specific printer components (deionized [DI] water level, DI water conductivity, air filters, and laser motor drive system) to demonstrate the DT’s inherent effectiveness towards CBM+. To embody the system of systems analysis for printer suitability and performance, more components should be evaluated and combined with the ship’s environment data. Additionally, this capstone recommends the use of DTs as a nexus into more complex weapon systems while using a deeper level of design of experiment.Outstanding ThesisCivilian, Department of the NavyCommander, United States NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Interferons: therapy for cancer

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore